
J. Fluid Mech. (2010), vol. 659, pp. 516–539. c© Cambridge University Press 2010

doi:10.1017/S0022112010002715

The intermediate wake of a body of revolution
at high Reynolds numbers
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Results are presented on the flow field downstream of a body of revolution for
Reynolds numbers based on a model length ranging from 1.1 × 106 to 67 × 106.
The maximum Reynolds number is more than an order of magnitude larger than
that obtained in previous laboratory wake studies. Measurements are taken in the
intermediate wake at locations 3, 6, 9, 12 and 15 diameters downstream from the stern
in the midline plane. The model is based on an idealized submarine shape (DARPA
SUBOFF), and it is mounted in a wind tunnel on a support shaped like a semi-infinite
sail. The mean velocity distributions on the side opposite the support demonstrate
self-similarity at all locations and Reynolds numbers, whereas the mean velocity
distribution on the side of the support displays significant effects of the support wake.
None of the Reynolds stress distributions of the flow attain self-similarity, and for all
except the lowest Reynolds number, the support introduces a significant asymmetry
into the wake which results in a decrease in the radial and streamwise turbulence
intensities on the support side. The distributions continue to evolve with downstream
position and Reynolds number, although a slow approach to the expected asymptotic
behaviour is observed with increasing distance downstream.
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1. Introduction
Turbulent wakes are one of the least studied flows, mostly due to their long

development length and the difficulty in measuring low-level turbulent intensities in
the far wake. Most of the previous works have focused on the behaviour of plane
wakes, such as those produced by circular cylinders, flat plates and airfoils (Goldstein
1948; Townsend 1956; Wygnanski, Champagne & Marasli 1986; Oertel 1990), and
most wake measurements have been performed at low to moderate Reynolds numbers.
The behaviour at high Reynolds numbers typical of large-scale vehicles is still largely
unexplored.

In a major contribution that has shaped much of the research in this area, Townsend
(1956) proposed that the far wake should approach a state of self-similarity and
become Reynolds-number-independent. In the far wake, the flow is in a state of
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Figure 1. Wake flow behind an axisymmetric body with nomenclature.

moving equilibrium where the mean and turbulent flow quantities can be determined
exclusively by a local velocity scale u0, the maximum velocity deficit and a length
scale l0, the distance from the centreline to the point where the velocity deficit equals
u0/2 (see figure 1).

Townsend (1956) further proposed that rapid attainment of self-similarity requires
relatively low turbulence production rates within the separated zone near the body.
In general, the wakes behind streamlined bodies of revolution appear to become
established more quickly than for axisymmetric bluff bodies such as disks (Carmody
1964; Chevray 1968; Sirviente & Patel 1999; Johansson & George 2006a ,b). Chevray
(1968) reported that the 6:1 prolate spheroid at a Reynolds number based on the
length of 2.75 × 106 produced a small separated flow zone extending about 0.12D

upstream and 0.10D downstream of the stern. The mean velocity distributions in the
wake were self-similar for x/D > 3, where x is measured in the streamwise direction
downstream from the stern, and D is the maximum diameter of the model. In contrast,
measurements at a Reynolds number of 7 × 104 based on diameter and free-stream
velocity in the wake of a circular disk, which generates a region of separated flow
that is several diameters long, showed that the mean velocity attained self-similarity
only for x/D � 15 (Carmody 1964). However, at a Reynolds number of 1.93 × 105

the mean velocity in the wake of disks and cups attained self-similarity for x/D � 3,
although the wake of the disk took longer to recover (Desabrais & Johari 2006).
Studies by Sirviente & Patel (1999) compared the effects of stern shape on wake
development for two similar axisymmetric bodies, one with an intact stern and the
other with a truncated stern, and found that the flow over the truncated model
separated earlier than the intact one, resulting in an initially larger wake width and
a faster attainment of self-similarity. Wygnanski et al. (1986) also showed that the
approach to self-similarity in plane wakes depends strongly on the nature of the wake
generator. Results by Symes & Fink (1977) on the wakes of circular cylinders oriented
normal to the flow direction suggest that the wake development also depends, to a
large extent, on the ratio of the length scale of the external turbulence to that of the
wake.
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More recent experiments in the wake generated by a circular disk for 10 � x/D �
150 at a Reynolds number of 26.4 × 104 showed that the mean velocity was self-
similar at all stations downstream, but the turbulence distributions did not become
self-similar until x/D = 30 (Johansson & George 2006a ,b). We define this region as
the intermediate wake, that is, where the mean flow is self-similar, but the turbulence
has not yet reached that state. The extent of the intermediate wake will depend on the
wake generator, the free-stream turbulence level and the streamwise pressure gradient,
among other parameters.

The presence of the support can obviously alter the flow field in the wake of
the body of interest. The wake studies by Gear (1965) on a 6:1 prolate spheroid
showed a marked influence by the support system on the wake development, leading
Chevray (1968) to use two sets of four steel wires to suspend the model in an effort
to minimize the support interference. Huang et al. (1992) found that the wake of a
body of revolution supported by streamlined struts displayed an altered local flow
field, and most other wake studies have employed wires as a means of suspension to
minimize flow disturbances (Merz, Yi & Przirembel 1985; Higuchi & Kubota 1990;
Sirviente & Patel 1999; Johansson & George 2006a ,b).

The present study addresses the wake of a body of revolution over a wide range of
Reynolds numbers, including the effects of the support. The model geometry is based
on the Defense Advance Research Projects Agency (DARPA) SUBOFF geometry
as described by Groves, Huang & Chang (1989). The flow over this model has been
studied by various investigators, but few have focused on the wake. Huang et al. (1992)
conducted experiments on the flow over the body at a Reynolds number based on the
length of 12 × 106, and also performed extensive numerical computations for this con-
figuration. Their measurements did not extend into the wake, but Jiménez, Reynolds &
Smits (2010) surveyed the early intermediate wake of an appended SUBOFF body
configuration with fins on the stern for a range of Reynolds numbers up to 1.8 × 106.
Sheng, Taylor & Whitfield (1995) and Hosder (2001) studied the effect of yaw, and
Sheng et al. (1995) also conducted numerical computations for configurations with
fins at a Reynolds number of 12 × 106 in order to compare them to the experimental
results of Huang et al. (1992). Several other computational analyses have been
conducted to validate computational fluid dynamics (CFD) codes, help understand the
complex flow about a submarine model with different configurations and describe the
fluid motions about a submarine conducting manoeuvres (Sung et al. 1993; Bull 1996;
McDonald & Whitfield 1996; Arabshahi et al. 1998; Alin, Berglund & Fureby 2000).

Here, we study the approach to self-similarity in the intermediate wake region
(x/D � 15). This is one of a very small number of experiments on body-of-revolution
wakes, and it spans a large range of Reynolds numbers, from ReL = 1.1 × 106 to
67 × 106, where ReL is the Reynolds number based on the model length L and
the free-stream velocity U∞. The highest Reynolds number is at least an order
of magnitude larger than any previous wake study, regardless of how the wake
was generated. The present experiments also examine the influence of the support
on the development of the wake. The support creates a junction flow with the
hull where the boundary layer separates from the hull due to an adverse pressure
gradient upstream of the support, and horseshoe vortices are formed and stretched
downstream by the fluid flowing around the support (Simpson 2001). Given that the
support has the same cross-section as the sail of the SUBOFF model, the present
experiments should provide insight into the effects of the sail of a submarine, and more
generally, any streamlined support system or appendage, on the development of the
wake.
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Figure 2. The Princeton High Reynolds Number Test Facility.

2. Experimental arrangements
The model was tested in the High Reynolds Number Test Facility (HRTF), a

closed-loop wind tunnel in the gas dynamics laboratory in Princeton University. This
facility achieves a wide range of Reynolds numbers by using compressed air as a
working fluid, with pressures up to 238 atm. A three-phase 149 kW motor drives
the impeller allowing velocities up to about 10 m s−1. A honeycomb, a mesh, two
screens and a circular 2.2:1 contraction section are used to minimize the free-stream
turbulence levels, which range from 0.3 % at the lowest Reynolds number to 1.1 % at
the highest Reynolds number. The HRTF has two working sections each 2.44 m long
with a 0.61 m outer diameter and 0.49 m inner diameter. The model was installed in
the upstream section, and the wake measurements were conducted in the downstream
section (see figure 2). Further details of the HRTF and the experiments described
here are given by Jiménez (2007).

The wake was generated by a 1/120 DARPA SUBOFF model (Groves et al. 1989),
with an overall length L = 0.87 m and a maximum diameter D = 0.102 m. The
support cross-section corresponds to that of the sail cross-section as specified by the
SUBOFF geometry. The combined blockage due to the model and support was about
5.7 %. No other appendages were used. The boundary layer was tripped about 0.75D

downstream of the model nose with a 0.51 mm diameter trip wire. To measure the
surface pressure, 45 pressure taps with inner diameters of 1.08 mm were installed in
the model. The model was aligned parallel to the tunnel wall within 0.05◦ and verified
by comparing the differential pressures over the straight portion of the body along
each side of the model, which were found to be within 2.3 % of each other.

The wake was examined at Reynolds numbers of 1.1 × 106, 12 × 106, 25 × 106,
50 × 106 and 67 × 106, although the surface pressure measurements were conducted
only at the three lower Reynolds numbers. To attain this range of Reynolds numbers,
the tunnel static pressure was varied between 5 and 218 atmospheres. The air
temperature inside the tunnel was measured using a platinum resistance temperature
probe (Omega Engineering, Inc.; Stamford, CT). The pressure was monitored using
three different PX303 Omega pressure transducers with full-scale pressure ranges
of 50, 500 and 4000 psig (0.345, 3.35 and 27.6 MPa). One United Sensor USNH-
A-368 Pitot-static tube was mounted on the traversing unit in order to calibrate
the crossed-wire sensor, and another, located 14.75D upstream of the model, was
used to determine the free-stream velocity. The Pitot-static dynamic pressures were
measured using one of two Validyne DP15 pressure transducers (Validyne Engineering
Corporation; Northridge, CA) with 0.86 and 22.1 kPa ranges, respectively, depending
on the Reynolds number. The same transducers were used for the surface pressure
measurements, which were sampled at 30 kHz for 10 s for each pressure tap.
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The measurements were conducted in the midline plane of the wake, which coincides
with the streamwise plane along the centre of the model and support. The traversing
system could position the probes anywhere within a cylindrical volume defined by
0 � x/D � 16, −1.3 � r/D � 1.3 and 0◦ � θ < 360◦, and the probes could be pitched
±15◦ for calibration purposes. The flow blockage due to the traversing assembly,
which is always located downstream of the stern, was about 2.3 %.

3. Hot-wire methods
To measure the streamwise and radial velocity components, a Dantec 55P51 crossed-

wire probe was used, with tungsten wires of diameter d = 5 µm and lengths l ≈ 1 mm,
powered by a Dantec Streamware constant temperature anemometer. The frequency
response of the wires exceeded 70 kHz for all cases. The hot-wire signals were sampled
at 20 kHz for 30 s at each point in the profile and low-pass filtered at 10 kHz. For all
profiles, the measurement points were separated by 3.81 mm in the radial direction.
Temperature increases of 0.05 ◦C, 0.15 ◦C, 0.9 ◦C, 2.5 ◦C and 10 ◦C were observed
during the acquisition of a given velocity profile for the five Reynolds numbers
studied. To account for changes in the fluid temperature, the hot-wire data were
corrected according to the procedure described by Hultmark & Smits (2010). The
crossed wires were calibrated for the streamwise and radial sensitivities before and
after every profile, using the methods described below.

3.1. Velocity calibration

It was assumed that the convective heat transfer follows the cosine cooling law. That
is, the crossflow sensitivity is represented by an ‘effective’ cooling velocity Uc given
by Uc = u cosφ, where φ is the effective cooling angle that needs to be found by
calibration.

The cooling velocities are related to the instantaneous velocities by

Uc1 = (u + u′) cosφ1 + (v + v′) sinφ1, (3.1)

Uc2 = (u + u′) cosφ2 − (v + v′) sinφ2, (3.2)

where the subscripts 1 and 2 refer to the two wires of a crossed-wire probe. The mean
streamwise and radial velocity components are denoted by u and v, respectively, with
corresponding instantaneous velocity fluctuations, u′ and v′. It is assumed that the
characteristic cooling angles are independent of Reynolds number, so that (3.1) and
(3.2) can be written as

Uc1

cos φ1

= u + u′ + (v + v′) tan φ1 = f (E1, φ1), (3.3)

Uc2

cos φ2

= u + u′ − (v + v′) tan φ2 = g(E2, φ2), (3.4)

where E is the anemometer output voltage output. Because φ1 and φ2 will not change
for a given set of crossed wires, the calibration functions f and g depend only on E.
To find f and g, we follow Perry (1982) and use fourth-order polynomials:

f = A0 + A1E1 + A2E
2
1 + A3E

3
1 + A4E

4
1, (3.5)

g = B0 + B1E2 + B2E
2
2 + B3E

3
2 + B4E

4
2 . (3.6)
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Taking the time average of (3.5) and (3.6) yields

f = u = A0 + A1E1 + A2E
2
1 + A3E

3
1 + A4E

4
1, (3.7)

g = u = B0 + B1E2 + B2E
2
2 + B3E

3
2 + B4E

4
2 . (3.8)

The calibration for the streamwise velocity component requires finding the coefficients
in (3.7) and (3.8). For the experiments presented here, this is done with the hot-wire
probe outside the wake where v = 0.

3.2. Angle calibration

The angle calibration method used here is an adaptation of the method proposed by
Bradshaw (1971), where it is assumed that tilting the probe by an angle η changes the
effective cooling angles by the same amount. Thus, for hot wires 1 and 2 with v = 0,

cos η + tan φ1 sin η =
f

u
, (3.9)

cos η − tan φ2 sin η =
g

u
. (3.10)

To find φ1 and φ2, (3.9) and (3.10) are fitted to the calibration data obtained over the
range ±15◦. Note that the sign convention is such that tilting the probe by a positive
value of η decreases φ1 while it increases φ2. The values of u + u′ and v + v′ are then
found using (3.3) and (3.4) as follows:

u + u′ =
f tan φ2 + g tan φ1

tan φ1 + tan φ2

, (3.11)

v + v′ =
f − g

tan φ1 + tan φ2

. (3.12)

3.3. Error estimates

The accuracy of the temperature reading of the working fluid was about ±0.5◦C.
This, together with 0.25 % accuracy in the tunnel static pressure measurement, gives
an uncertainty in the dynamic viscosity, µ, and density, ρ, of about ±1.5 % and
±0.4 %, respectively.

The velocity and turbulence intensity uncertainties were determined by calculating
the quadrature sum of the propagated errors of the density calculation, pressure
transducers and the largest velocity difference between the initial and final calibrations
(Yavuzkurt 1984). The uncertainties were at most 0.73 %, 2.13 % and 6.58 % for the
mean velocity, and the streamwise and radial turbulence intensities, respectively. The
effective linear displacement resolution in the traverse was ±0.4 µm in the radial plane
and ±6.4 µm in the streamwise direction.

Errors could also arise when measuring with crossed wires in shear layers due
to the finite sensor volume. Gessner & Moller (1971) proposed a shear parameter
S = (�U/Ucl)(d/l), where �U is the velocity change along the length of the wire, and
Ucl is the velocity at the centre of the wire. In the current experiments S < 2.90 × 10−4,
and since this is considerably less than the critical value of 10−3 suggested by Lomas
(1986), errors due to mean shear effects were negligible.

In addition, the wavenumber kl corresponding to the wire length is always greater
than about 6300, so that spatial filtering effects should be minor (see § 4.5). Here
k = 2πf/U∗, where f is the frequency and U∗ is the local mean velocity.
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Figure 3. Contour maps of the coefficient of pressure based on measurements conducted at
45 different pressure taps (indicated by �). The model surface is mapped onto a plane, hence
the distorted aspect ratio. Note that the bottom boundary is coincident with the top boundary.
ReL = 1.1 × 106 (a), 12 × 106 (b) and 25 × 106 (c).

4. Results and discussion
4.1. Surface pressure

The pressure distributions along the surface of the submarine model are shown for
the three lower Reynolds numbers in figure 3. The coefficient of pressure is defined
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Figure 4. (a) Coefficient of pressure along the top meridian line of the submarine model on
the side opposite the support. �, ReL = 1.1 × 106; �, 12 × 106; +, 25 × 106; �, Huang et al.
(1992) at ReL = 12 × 106. (b) �, location of pressure taps.

as

Cp =
p − p∞

ρU 2
∞/2

, (4.1)

where p∞ and ρU 2
∞/2 are the free-stream static and dynamic pressures, respectively,

measured at a point 14.75D upstream of the model. The horizontal axis in figure 3
corresponds to the non-dimensional length of the model, x/L, and the vertical axis
corresponds to the non-dimensional circumference, D+ = πD/L, hence the distorted
aspect ratio. The support, located at x/L ≈ 0.2, also displays a distorted aspect ratio.
The bottom boundary is coincident with the top boundary.

In the region −0.1 < D+ < 0.1, the lowest Reynolds number displays a distribution
that is significantly different from the higher-Reynolds-number cases. In particular,
the pressure is slower to rise over the bow of the model and starts to fall much earlier
over the stern, and it demonstrates a much more pronounced effect of the support.
For the two higher Reynolds numbers, the distributions are essentially identical given
that the contours are constructed from only 45 point measurements. Note that in
all cases the downstream effect of the support can be seen clearly in the region
0.6 < x/L < 0.8. There exist local spanwise bulges in the pressure that are correlated
directly with the position of the support, although their influence diminishes rapidly
closer to the stern.

The pressure distribution along the top meridian line of the submarine model,
which is on the side away from the support and corresponds to the top and bottom
boundaries in figure 3, is shown in figure 4. The SUBOFF measurements by Huang
et al. (1992) at ReL = 12 × 106 follow the same trends as the data presented here,
although they appear to be offset by a constant amount. It seems likely that the
discrepancy is due to the difference in the reference pressure location. The reference
pressure was measured above the model at x/D ≈ −1.3 for Huang et al. (1992),
whereas in the present measurements it was obtained at x/D = −23.3 (= 14.75
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Figure 5. Profiles of u/Ue , at �, x/D = 3; ✳, 6; �, 9; �, 12; �, 15, for ReL = 1.1 × 106

(a), 12 × 106 (b), 25 × 106 (c), 50 × 106 (d ) and 67 × 106 (e).

upstream of the model nose). In all cases, the pressure is relatively constant over
the straight part of the body (0.23 � x/L � 0.74). The pressure then decreases over
the region of convex curvature near the start of the stern taper, before increasing over
the region of concave curvature near the end of the stern. The concave portion of the
stern has been identified as a region where the boundary-layer thickens rapidly due to
a significant static pressure variation across the boundary layer (Patel, Nakayama &
Damian 1974; Huang et al. 1992).
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Case 1 Case 2

ReL A B A B

1.1 × 106 1.15 0.105 1.18 0.113
12 × 106 1.01 0.091 1.034 0.098
25 × 106 0.93 0.087 0.96 0.094
50 × 106 0.85 0.085 0.875 0.092
67 × 106 0.79 0.084 0.808 0.091

x0/D 1.80 4.68 2.08 2.08
σ 2 0.00176 0.00067 0.00191 0.00169

Table 1. Coefficients in the power-law relationships for u0 and l0.
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Figure 6. Similarity scales for the wake velocity deficit u0 (grey symbols) and corresponding
correlations (grey lines); half-wake width l0 (black symbols) and corresponding correlations
(black lines), for �, ReL = 1.1 × 106; ✳, 12 × 106; �, 25 × 106; �, 50 × 106; �, 67 × 106. The
values of A, B and x0 for the correlations correspond to case 2 in table 1.

4.2. Mean velocity

Figure 5 shows the mean velocity profiles non-dimensionalized by Ue, the local
free-stream velocity, for all Reynolds numbers. The strength of the wake decreases
rapidly with downstream distance, and it is clear that the support affects the velocity
distributions.

The similarity scales for the defect velocity and half-wake width were found to
follow power-law relationships given by A(x/D + x0/D)−2/3 and B(x/D + x0/D)1/3,
respectively, as expected from the similarity analysis by Townsend (1956). Various
nonlinear curve fits were tried and results are shown in table 1. The most accurate
curve fit was attained by minimizing the sum of the squared residuals, σ 2, where the
residual is the difference between the measured value and the value provided by the
curve fit. For case 1, x0 was unrestrained for each curve fit and yielded different x0
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Figure 7. Mean velocity in similarity coordinates, for �, x/D = 3; ✳, 6; �, 9; �, 12; �, 15.
Solid line is equation (4.2). ReL = 1.1 × 106 (a), 12 × 106 (b), 25 × 106 (c), 50 × 106 (d ) and
67 × 106 (e).

values for the defect velocity and half-wake width relationships. For case 2, x0 was
unrestrained for each curve fit, but forced to be equal for the defect velocity and
half-wake width. Case 1 yielded lower values of σ 2, but the values of A and B do
not depend strongly on the virtual origin position, and they appear to asymptote
towards constant values at high Reynolds numbers. This indicates that the wake is
still evolving slowly in the streamwise direction over this range of x/D locations. The
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Figure 8. Coefficients of drag. �, SUBOFF model; ✳, DTMB 5495-3 model with a conical
stern by Bridges, Cash & Freudenthal (2006).

values for A, B and x0 for the power-law relationships shown in figure 6 correspond to
case 2. Jiménez et al. (2010) found that A = 1.053 and B = 0.110 at ReL = 1.1 × 106,
which are slightly different to the values found here at the same Reynolds number,
probably because Jiménez et al. (2010) determined A and B from data taken over a
shorter streamwise distance (3 � x/D � 9).

Symes & Fink (1977) observed that for the wakes of circular cylinders an
increase in free-stream turbulence intensity leads to larger half-wake widths, smaller
velocity deficits and an earlier attainment of self-similarity. Although the free-stream
turbulence intensity in the HRTF increases with Reynolds number from a minimum of
0.3 % to a maximum of 1.1 %, there is no obvious influence on the wake development.
The velocity deficits are larger for the ReL = 1.1 × 106 case (figure 6). This is probably
a low-Reynolds-number effect, since low-Reynolds-number boundary layers are more
susceptible to adverse pressure gradients, resulting in a wider wake, as seen in figure 6
where the half-wake width is consistently larger for ReL =1.1 × 106 compared to the
higher Reynolds numbers.

Figure 7 shows the mean velocity distributions in similarity coordinates, which
highlights the effects of the support already seen in figure 5. This asymmetry has also
been observed in the velocity profiles downstream of the sail in SUBOFF numerical
simulations at ReL = 12 × 106 by Alin et al. (2000), and experimentally by Jiménez
et al. (2010) at ReL =1.1 × 106. On the side away from the support (r/ l0 > 0),
however, the distributions show a self-similar behaviour at all downstream locations
and at all Reynolds numbers. The profile on this side is accurately described by the
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Figure 9. Variance of the streamwise velocity fluctuations in similarity coordinates for �,
x/D = 3; ✳, 6; �, 9; �, 12; �, 15, for ReL = 1.1 × 106 (a), 12 × 106 (b), 25 × 106 (c) (d) 50 × 106

(d ) and 67 × 106 (e).

function:

f (η) = exp(−0.61η2 − 0.065η4 − 0.03η6 − 0.006η8). (4.2)

A similar function was reported by Jiménez et al. (2010) at lower Reynolds numbers,
with slightly different values of the coefficients. Equation (4.2) also describes the
velocity profile on the side with the support, at least for r/ l0 � −1, but further
from the centreline the effect of the support is to reduce the velocity gradients. The
mean velocity displays self-similarity as early as x/D = 3. This is consistent with the
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Figure 10. Variance of the streamwise velocity fluctuations in similarity coordinates for �,
ReL = 1.1 × 106; ✳, 12 × 106; �, 25 × 106; �, 50 × 106; �, 67 × 106, at x/D = 3 (a), 6 (b), 9
(c), 12 (d ) and 15 (e).

results of Chevray (1968) in the wake of a prolate spheroid at ReL = 2.75 × 106 and
in axisymmetric wakes over a broad range of axial positions at very low Reynolds
numbers (Higuchi & Kubota 1990).

The coefficient of drag may be calculated from the wake mean-velocity distribution,
using the methods outlined by Dimotakis (1977) and Bridges et al. (2006). The
contributions from the gradients of pressure and normal stresses are negligible
for x/D � 3. It was assumed that (4.2) holds for the entire wake in order to
find the drag coefficient of the unsupported body. The results are shown in
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Figure 11. Distributions of the mean square turbulence intensity at �, x/D = 3; ✳, 6; �, 9;
�, 12; �, 15 for ReL = 1.1 × 106 (a) and 67 × 106 (b).

figure 8, where they are compared with the data from Bridges et al. (2006) for
an axisymmetric submarine model with a conical stern (DTMB model 5495-3).
Although broadly similar trends are observed, the SUBOFF drag coefficients are
significantly lower. Also, the DTMB data appear to show the effects of roughness
for ReL > 80 × 106, in that the drag coefficient is becoming independent of Reynolds
number.

4.3. Turbulence

Figures 9 and 10 show the variance of the streamwise velocity fluctuations in similarity
coordinates. Unlike the mean velocity, the turbulence shows no evidence of self-
similarity at any Reynolds number or downstream location. For all Reynolds numbers,
the levels increase with increasing x/D since u′2 decreases more slowly than u2

0

(figure 9). A similar behaviour is seen with increasing Reynolds number at a fixed

x/D (figure 10). Figure 11 shows the mean square turbulence intensity u′2/U 2
e versus

r/D at the two extreme Reynolds numbers, demonstrating that, as expected, the
turbulence intensity decreases with increasing downstream distance but, as seen from
figure 9, it does not decrease as rapidly as u2

0.
For the lowest Reynolds number, the turbulence profiles are relatively symmetric

at all downstream locations, displaying a local minimum on the centreline and two
distinct peaks at r/ l0 ≈ ±1(r/D ≈ ±0.15). The shape of this bimodal distribution has
its origin in the development of the boundary layer near the stern, where the thin
boundary layer over the constant diameter zero-pressure-gradient region transitions
to a thicker profile in the adverse pressure gradient tail region. This change in pressure
gradient causes the turbulence intensity values to decrease near the wall so that the
location of the maximum value shifts away from the wall (Patel et al. 1974; Merz
et al. 1985). This behaviour is as expected, demonstrating the formation of the wake
as a merging of the axisymmetric boundary layer, reflecting the distribution of large
vortical structures about the centreline (Sato & Kuriki 1961; Ramaprian & Patel 1982;
Wygnanski et al. 1986). Johansson & George (2006a) found that for a circular disk
the twin peaks were a feature of the entire wake, persisting into the far (self-similar)
wake.
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For the SUBOFF wake at higher Reynolds numbers, however, the profiles become
distinctly asymmetric, and the asymmetry increases with Reynolds number and
downstream position. In all cases, the larger peak appears on the non-support side
(r/D > 0), but at sufficiently high Reynolds number the peak on the support side
disappears entirely, exaggerating the level of asymmetry and reflecting the strong
influence of the support on the evolution of the wake below the centreline.

The radial turbulence fluctuations display similar trends to those seen for the
streamwise component (see figure 12). Again, there is no clear indication that the
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Figure 13. Distributions of the mean square turbulence intensities at x/D = 12 for �,
ReL = 1.1 × 106; ✳, 12 × 106; �, 25 × 106; �, 50 × 106; �, 67 × 106. (a) Streamwise component;
(b) radial component.

profiles are approaching a self-similar state, although the influence of the support
seems less marked in that the strong asymmetry seen in the streamwise component is
not as evident in the radial component. This may suggest that the orientation of fluid
structures is becoming more random as it transitions from the configuration present
in a turbulent boundary layer to a more homogeneous free shear flow.

It should be noted that the focus on similarity scaling tends to mask the behaviour
of the turbulence itself. At any fixed downstream location, the streamwise and
radial turbulence intensities are almost independent of Reynolds number for all
but the lowest Reynolds number. This is shown in figure 13 for x/D = 12, which
is representative of the behaviour at other downstream locations. It appears that
similarity scales are not particularly useful for describing the turbulence in the
intermediate wake, and we see that in absolute terms effects of Reynolds number
variations on the turbulence are small for ReL � 12 × 106.

The turbulent shear stress results are plotted in figure 14. As seen for the normal
stresses, the distribution is relatively symmetric for ReL = 1.1 × 106, but asymmetric
for the larger Reynolds numbers, with larger magnitudes on the side without the
support. The distributions have not attained self-similarity for any of the locations or
Reynolds numbers studied, but the effects of Reynolds number are less pronounced
than for the normal stresses, even in similarity coordinates.

The maximum values of the Reynolds stresses, u′2
m/u2

0, v′2
m/u2

0 and u′v′
m/u2

0, are
shown in figure 15 for the side away from the support. The figure summarizes
the trend to self-similarity. There exists only a weak Reynolds number dependence
(excluding the lowest Reynolds number), and all components display a reduced
growth rate for x/D > 9, although it is apparent that self-similarity will not be
attained in the intermediate wake. It may well take as long as that observed by
Johansson & George (2006a) in the wake behind a circular disk, where they found
that the intermediate wake extended to x/D = 30.

4.4. Local effects of the support

An important question is whether the flow opposite the support is representative of
the unsupported wake, that is, one that is free of any support interference. To answer
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Figure 14. Turbulent shear stress in similarity coordinates at: �, x/D = 3; ✳, 6; �, 9; �, 12;
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this question, additional measurements were conducted in the horizontal and vertical
planes at x/D = 12 for ReL = 25 × 106. Due to the limitations of the traversing system,
the centres of these planes were displaced by about 2 mm towards the support side,
resulting in small differences in the magnitudes of the fluctuations compared to the
main body of the data presented here. Figure 16 demonstrates that for r/ l0 > 0 the
results for both planes agree in the mean velocity and in the fluctuation levels within
the experimental uncertainty, confirming that the support affects only the lower side
of the wake r/ l0 < 0, where it attenuates the fluctuation levels and decreases the
mean velocity.
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4.5. Energy spectra

To examine the frequency content of the turbulence, the pre-multiplied energy spectra
kΦuu are shown in figures 17 and 18. A striking feature is seen for ReL � 12 × 106,
where a low-wavenumber peak is present at kl0 ≈ 0.3, corresponding to a Strouhal
number St = f D/U∞ ≈ 0.2. This peak may indicate the presence of a coherent
shedding process in the wake. The peak is observed at all radial locations in the
streamwise component (figure 18), although it weakens as x/D and r/D increase.
This feature is not seen in the energy spectra for the radial component (data not
shown). The low-wavenumber peak appears at ReL = 12 × 106, which is the same
value where the turbulence intensity profiles become asymmetric, suggesting a causal
connection. Figures 18(c) and 18(d ) show that this peak, even if weaker downstream,
is still present at x/D = 15. Self-similarity is not expected to occur until this memory
of the wake generator has disappeared.

5. Discussion and conclusions
Experiments over an unprecedented Reynolds number range from ReL = 1.1 × 106

to 67 × 106 have revealed the characteristics of the intermediate wake generated by
an axisymmetric body based on the DARPA SUBOFF geometry. The model was
mounted on one side by a support formed by an extension of the sail, and the
support introduced a strong asymmetry in the wake at all but the lowest Reynolds
number.

On the side away from the support, the mean velocity profiles collapsed in similarity
scaling at all locations and Reynolds numbers. This scaling also described the velocity
profile on the side with the support, at least for r/ l0 � −1.0, but for larger distances
from the centreline the support reduced the velocity gradients in the wake.
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The streamwise and radial turbulence intensity values, as well as the Reynolds
shear stresses, were still far from self-similar at the furthest downstream location,
but the data showed a tendency to self-similarity for x/D > 9 on the side away
from the support, at a rate similar to that seen in the wake of a circular cylinder
by Johansson & George (2006a). At the lowest Reynolds number the profiles were
approximately symmetric with twin peaks of similar magnitude on either side of
the centreline, but at higher Reynolds numbers the peak on the side of the support
disappeared, and all the Reynolds stresses on that side were lower than the levels
seen on the side away from the support. The anisotropy decreased with downstream

distance where u′2/v′2 was about 2 at x/D = 3 for all Reynolds numbers, but at
x/D = 15 this ratio had decreased to about 1.3.

The spectra revealed a peak at a Strouhal number of about 0.2 for all the higher
Reynolds numbers, suggesting the presence of a coherent shedding process. The peak
was evident on both sides of the wake, but reduced sharply with increasing distance
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downstream. The slow decay of vortices shed into the wake may well be a contributing
factor in setting the rate at which the wake approaches self-similarity.

The lowest Reynolds number wake behaves very differently from the higher
Reynolds number cases. At the lowest Reynolds number the pressure distribution
shows a markedly greater influence of the support, the wake is almost exactly
symmetric and there is no evidence for the shedding of coherent structures into the
wake. In many respects, the low-Reynolds-number wake is what would be expected
from the wake generated by a body of revolution, in the absence of the effects of a
support. Three aspects, however, may come into play at this Reynolds number: (i) the
trip wire may not be fully effective, (ii) the flow over the stern may separate earlier
and (iii) the support boundary layer is most likely laminar, since the chord Reynolds
number is only 9.3 × 104. With respect to the first aspect, Jiménez et al. (2010) in a
related study on the effects of fins on the wake found that the trip appeared to be fully
effective, even at this Reynolds number. Also, in earlier work in the HRTF, the model
wake was examined in the absence of the trip wire, and the mean velocity profiles at
this Reynolds number were quite different from those reported here. Regarding the
second aspect, although the boundary layer may be expected to separate earlier at
lower Reynolds numbers, there is little evidence in the pressure distributions near the
stern to support this possibility. With reference to the third aspect, even if the support
boundary layer is laminar its wake will quickly transition to turbulence and would
not be expected to show any significant Reynolds number effects far downstream. At
this point there appears to be no obvious explanation for the apparently anomalous
behaviour at the lowest Reynolds number.

Considering the higher Reynolds numbers, for ReL � 12 × 106 the variation of
the absolute turbulence levels with Reynolds number is probably negligible within
the experimental uncertainty, and similarity scaling is not appropriate. The approach
to self-similarity was certainly slow, and appeared to be similar to that seen by
Johansson & George (2006a) in the wake behind a circular disk, where they found
that the intermediate wake extended to x/D = 30. The dominant parameter is the
downstream development length, and not the Reynolds number.
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It was found that the wake on the side away from the support is not influenced
by the support wake, or by the flow produced in the support/body junction. For
the flow in the plane of the support, the mean velocity profiles suggest that the
effects of the support are confined to a region r/ l0 < −1, whereas the turbulence
profiles are affected for r/ l0 < 0. The effects of the support on the wake development
appear to be similar to the effects introduced by the sail on a submarine wake. The
support/junction flow is expected to be similar to the sail/hull junction flow, but the
aspect ratio of the support is obviously much larger than that for the sail, and so
the tip vortex is not present. However, both the tip vortex and junction vortices are
weak at zero yaw angle (Jiménez 2007), and the dominant influence seems to be the
interference that occurs between the wake generated by the support and the wake
generated by the body of revolution. The result is to decrease all the Reynolds stresses
on the support side.

This work was made possible by support received under ONR Grants N00014-03-
1-0320, N00014-07-1-0111 and N00014-09-1-0263, monitored by Dr Ron Joslin.
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